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The image gas atoms in the vicinity of the specimen are polarized because of the high field and then
attracted to the apex region of the specimen. After a series of collisions with the specimen during which
the image gas atoms lose part of their kinetic energy, these image gas atoms become thermally
accommodated to the cryogenic temperature of the specimen. If the field is sufficiently high, these image
gas atoms are field ionized by a quantum-mechanical tunneling process. The ions produced are then
radially repelled from the surface of the specimen towards the microchannel plate and screen assembly. A
microchannel plate image intensifier positioned immediately in front of the phosphor screen produces
between 103 and 10% electrons for each input ion. These electrons are accelerated towards the phosphor

screen where they produce a visible image. The field-ion microscope was invented by Erwin Muller in

1951 at Pennsylvania State University. 5
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E-beam

and ion beam sources

Ideal electron
point source

Traditional

The electron source
field emitted from
aslngle-atom tip

The field emission
electron source

e — ]
Low brightness, High brightness,
High aberration, Small aberrations,
Poor coherence. High spatial coherence,

Be focused very easily.
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Ideal ion
Tl‘adlthIlal point source
The field ion source The field ion source

emitted from
asingle-atom tip

Low brightness, High brightness,

High aberration, Small aberrations,
Poor stability High stability,

Be focused very easily.




Visibility
(Imax . Imin)

V =
(Imax T Imin)
=0.78

Intensity (Arb. Units)

Nanotechnology 20, 115401 (2009)
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Electron Biprism

SWNT bundle can act as a
nanoprism, which splits the
wavefront of an incoming
electron wave into two
coherent partial waves,
which are deflected by the
electric fields around the
nanoprism in opposite
directions and meet on the
screen.




Tunneling Distance control
current amplifier and scanning unit

Tunneling
voltage
Data processing
and display

References:

1. G. Binnig, H. Rohrer, C. Gerber, and Weibel, Phys. Rev. Lett. 49, 57
(1982); and ibid 50, 120 (1983).

2. J. Chen, Introduction to Scanning Tunneling Microscopy, New York,
Oxford Univ. Press (1993).

2010F12816H E 870
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Outline

> Quantum well states in ultrathin Pb films
® Manifestation of interfacial potential
® Effect of image potential
> Gundlach osillations in STM configuration
° Work function measurements
> Transmission resonance through thin films
° Determination of film thickness
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Various quantum phenomena
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energy crystal film RARRIER

Transmission
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Scanning Tunneling Spectroscopy

(feedback off) (feedback on)
|-V spectrum Z-\/ spectrum

[ [ " p.(Ep-eV+e) pr(Epte)d e scanning
pr 1s constant = dI/dV o« p(Eg-eV)
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Pb _islands on the IC Pb/Si(111)

) »

A + Pb
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Quantum size effect

A\ = de Broglie wavelength of electron
a = thickness of metal film
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Spectra for Pb Films

Pb(111) N=1~20
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Apparent island heights
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in layer stacking

Difference
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Characteristics of Pb islands---
Bias-dependent imaging contrast
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Characteristics of Pb island:
oscillatory and complementary contrast

Type |l Type |

W.B. Jian et al., Phys. Rev. Lett. 90, 196603 (2003)
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Effect of image potential
on quantum well states
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of image potential

A/A

(a) 13-layer
'><A/A/
‘\0&.

Exp. \
A Cal. (only square well)
e Cal. (including image potential)

21 22 23 24 25
Quantum number

Exp. (b)

Phase accumulation (PA) model: total phase=2nn _ A Cal. (only square well
For simple square well: ~ 4 e Cal. (including image potential)

2k(N+1)d=2nn
Including phase ¢g contributed from image

potential
2k(N+1)d+¢pg=2nn

and ¢g/1=[3.4 eV/(E,~E)]"2-1

Island thick |
E: energy of quantum well state sland thickness (layer)

E,: Vacuum level E,=4.6 eV above E

2010F12816H E 870




Accumulative phase model

0o

Accumulative phase for quantization:

2k(N+1)d+ hg =2nm

\

Image-potential

.

Penetration depth: d/2

Finite square well with width Nd is approximated by
infinite square well with width (N+1)d (M=N+1/2+1/2)
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Work function of ultrathin films

work function measurement for thin film Broad beam technique
using photo-emission spectroscopy

(a) Quantum Well States for Ag on Fe(100) reqUire Iayer by |ayer grOWth
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J. J. Paggel et al. 66, Phys. Rev. B Local probe technique, e.g. STM
(2002) 233403,
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Gundlach oscillation

standing-wga
states

F=03Vv/R

Superposition of image potential
and applied potential

Constant energy separation = Work function difference
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Work function measurements
by Gundlach oscillation
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Ag/Cu(111)

e 1-layer Ag

= = —Cu(111)
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Two-photon photoemission intensity

Energy shift (eV)

Wallauer et al., Surf. Sci 331, 731 (1995)
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Transmission Resonance

in Ag Films on Si(111)

1 2 3 4 5 6 7 8 9 10
Sample bias (V)

Work function of Ag/Si(111) = 4.41 eV
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“Finger print” of film thickness

Low temperature deposition followed
annealing to room temperature
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Summary

- Quantum well states are measured with STS in the
Pb films of varied thickness on the Si(111) surface.

. The lattice mismatch aft the interface produces a periodic
potential variation, which manifests in a vertical charge oscillation
at the surface, and the subtle phenomena of the complementary.
and alternating contrast reversals through two types of islands with
different stacking are observed.

« The QW states in the energy range of 2 - 5 eV above the Fermi
level are affected by the image potential, which causes the
Shrinking in energy Sseparations with the quantum numbetr.
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Summary

* A general phenomenon of the constant energy shift
IS observed in high order Gundlach oscillation.

The work function of a thin metal film can be measured with the
constant energy shift better than 0.02 eV, comparable to the
photoemission results.

° Quantum transmission resonance can be observed
with STS in Ag films on the Si(111) surface.

Positions of the transmission resonance measured with STS can
serve as finger prints for the Ag films of varied thickness.
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